Fonctions, équations et tangentes

Publié le 1 juin 2015 il y a 4A par kate-loose2001 - Fin › 12 juin 2015 dans 4A
1

Sujet du devoir

Question 1: On considère la fonction f définie et dérivable sur l'intervalle [0;8,5] où les points :

A de coordonnées [0;2], B [2;5,5], C [4;2] et D [6;2] sont sur la courbe C représentant la fonction f.

1- Donnez f'(0), f'(2), f'(4), et f'(6) .

2- Déterminer l'équation de la tangente de la courbe C au point A, puis au point C, et enfin au point D.

 

Question 2: On considère la fonction f définie pour tout x réel par f(x)=1,2x²+3x+6.

1- En calculant lim H->0  f(3+h)-f(3)  / h  , déterminer f'(3).

2- On se place dans un repère orthonormé (O,I,J).

a) Tracer la courbe Cf représentation graphique de la fonction f.

b) Déterminer les équations des tangentes à Cf aux points d'abscisses 3 et -2.

c) Tracer ces deux tangentes puis calculer les coordonnées de leur point d'intersection.

 

 

Où j'en suis dans mon devoir

Bonjour, je suis en 1ere ES et je suis au CNED pour des raisons d'itinérance, je suis 80% de l'année en navigation dans le monde et je n'ai pas souvent les pieds à terre, alors j'en profite cette semaine pour vous demander un petit coup de pouce car je n'arrive pas du tout à ces deux questions et je dois rendre mon devoir au plus vite, (soit cette semaine car je repars samedi) !

Je vous remercie d'avance pour votre aide

Cordialement

Kate  :)




15 commentaires pour ce devoir


NATHALIE
NATHALIE
Posté le 1 juin 2015

1- Donnez f'(0), f'(2), f'(4), et f'(6) :

tu dois avoir un graphique?

f'(0) correspond au coefficient directeur de la tangente à la courbe au point d'abscisse 0: il faut le lire sur le graphique.

NATHALIE
NATHALIE
Posté le 1 juin 2015

2- Déterminer l'équation de la tangente de la courbe C au point A, puis au point C, et enfin au point D.

C'est à chaque fois une équation de droite à trouver,tu as déjà le coefficient directeur grâce à la 1ère question , il reste à trouver l'ordonnée à l'origine de chaque tangente.

NATHALIE
NATHALIE
Posté le 2 juin 2015

As tu compris maintenant?

kate-loose2001
kate-loose2001
Posté le 2 juin 2015

Ok j'ai compris pour la 1 mais pas pour la 2 !!!

En 1- j'ai f'(2) = 0 car tangente horizontale f'(4)= -1,5, f'(6)= 1,6 et f'(0) = 4 ?

2-

l'équation de la tangente à la courbe C au point A est;

j'applique=> y-f(a)=f'(a) (x-a)

soit

A->   y-2=4(x-0)

         y= 4x+2

B->    y-2=-1,5 (x-4)

         y=-1,5x+(-1,5x4 /-2)

         y= -1,5x +3

C->    y-2=1,6 (x-6)

          y= 1,6x+ (1,6x6 /-2)

          y=1,6x + 4,8

 

 

 

 

NATHALIE
NATHALIE
Posté le 2 juin 2015

A->   y-2=4(x-0)

         y= 4x+2 c'est juste.

NATHALIE
NATHALIE
Posté le 2 juin 2015

B->    y-5.5=0* (x-2)

         car YB=5,5 et XB=2 et f'(2)=0

NATHALIE
NATHALIE
Posté le 2 juin 2015

C->    y-2=-1.5 (x-4)

          car Yc=2, XC=4 et f'(4)=-1.5

NATHALIE
NATHALIE
Posté le 2 juin 2015

B->    y-2=-1,5 (x-4)

         y=-1,5x+(-1,5*-4) + 2

         y= -1,5x +8 c'est pour le point C.

NATHALIE
NATHALIE
Posté le 2 juin 2015

C->    y-2=1,6 (x-6)

          y= 1,6x+ (1,6*(-6)) + 2

          y=1,6x + ...... c'est pour le point D.

 

NATHALIE
NATHALIE
Posté le 3 juin 2015

As tu réussi à faire l'exercice 2?

kate-loose2001
kate-loose2001
Posté le 3 juin 2015
Merci beaucoup j'ai trouvé ça y est ! Par contre pour le D je trouve un nombre négatif soit (-7,6) ..... On a donc : y=1,6x + 7,6 ? Non pour ce qui est de l'exercice 2 je n'ai pas trouvé !
NATHALIE
NATHALIE
Posté le 4 juin 2015

y-2=1,6 (x-6)

          y= 1,6x+ (1,6*(-6)) + 2

          y=1,6x +  -7.6 c'est pour le point D.

 

NATHALIE
NATHALIE
Posté le 4 juin 2015

1- En calculant lim H->0 f(3+h)-f(3) / h , déterminer f'(3).

Remplace x dans f(x) par 3+h pour calculer f(3+h)

Puis remplace x dans f(x) par 3 pour calculer f(3)

Écris le calcul f(3+h)-f(3) / h

Ensuite calcule la limite quand h tend vers 0 cela correspond à f'(3).

kate-loose2001
kate-loose2001
Posté le 4 juin 2015

C'est bon pour le 1- j'ai trouvé merci !

f'(3) = 25,8 + h(10,2 + h)- 25,8 / h = 10,2 + h sa limite lorsque h tend vers 0 est donc 10,2 

f'(3)= 10,2 ?

 

Pour le 2- aussi je crois que c'est bon mais ce que je n'arrive pas à faire c'est tracer la courbe Cf et les tangentes !!!

 

kate-loose2001
kate-loose2001
Posté le 6 juin 2015

La tangente au point d'abscisse 3 est y=10,2x -4,8 c'est bien ça ?

 

Pour ce qui est de la tangente au point d'abscisse -2 je ne peux pas le trouver car je n'arrive pas à tracer la courbe Cf ... je ne sais pas comment faire -_-' ! Il faut que je trouve f'(-2) pour pouvoir trouver la tangente ???


Il faut être inscrit pour aider

Crée un compte gratuit pour aider

Je m'inscrisOU

J'ai déjà un compte

Je me connecte